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A B S T R A C T  

Triviality of the two-sided tail field of a stationary process is not an invetri- 
ant property under factorization ([4]). In this paper we give an example 
of a bilaterally deterministic process with finitely many states which is 
strongly mixing. This extends and complements a result of BraAley ([1]) 

1. I n t r o d u c t i o n  

X Let X = ( , , }~=_~  be a finite s ta te  s t a t ionary  process. A factor process of 
oo X, f ( X ) ,  is a s ta t ionary  process Y = ( Y ~ } n = - ~  which is obta ined  as follows: 

Let ]0: X --+ finite set, f0 measurable,  Y0 = f0(X)  and Y,~ = ]o(o ~ X) whcre a 
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is the shift, (aX)i = Xi+l. V is an isomorphic factor if S may be taken to be 

invertible. 

A property of a stationary process is an invariant property if it is also shared 

by all its factor processes. For example, the Kolmogorov zero-one law is an 

invariant property. This law says that the tail a-algebra is trivial. A stronger 

property is that  the two-sided tail is trivial. This (r-algebra is defined as follows: 

Let ~-+ = a(Xn, Xn+l , . . . )  be the a-algebra generated by Xn, Xn + l , . . .  and 

.T~ = a(X_,~, X- ,~- I , . . . )  be the a-algebra generated by X_ , ,  X _ ~ _ I , . . . .  

Then, the two-sided tail of X is defined by 

o o  

N J::v J::. 
n ~ l  

If X is an independent, identically distributed (i.i.d.) process, then the two- 

sided tail is trivial. But, it was shown by Ornstein and Weiss ([4]) that this is 

not an invariant property, and that any stationary process has a factor (actually 

isomorphic) process such that the two-sided tail is (up to sets of measure zero) 

the total a-algebra generated by the process. Such a process is called b i la te ra l ly  

de te rmin i s t i c .  

A mixing property, which Ornstein showed to be invariant, is the very weak 

Bernoulli property (VWB). However, there are a number of mixing properties 

known in probability theory which are non-invariant. One example is a-mixing 

(strong mixing or Rosenblatt mixing ([5])) which says that given e > 0 there 

exists n0(e) such that, if n >_ n0(e), 

sup ]P(A N B) - P(A)P(B)I < e. 
A E . T +  ; B6..T'ff 

It was shown in [6] that there is a VWB process which is not C-mixing (see [2] 

for a definition and the relation to strong mixing). In fact, VWB processes need 

not to be a-mixing as a variant on the examples given in [4] show. On the other 

hand a-mixing does imply the Kolmogorov 0-1 law. 

A stronger mixing condition than a-mixing is p-mixing, which is the following 

(see [2]): Given e > 0 there exists n0(e) such that for n _> n0(e) 

sup {p(g, h): g e E2(X) is .T+-measurable, h e E2(X) is 7-,~--measurable } < e, 

where p(g, h) is the correlation coefficient. Bradley ([1]) constructed a process 

which is bilaterally deterministic and yet is p-mixing. However, the constructed 
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process has the disadvantage of being a continuous state process. He left it as 

an open problem to construct a finite state process with such properties. We 

give a partial answer to this problem by constructing a finite state bilaterally 

deterministic process which is (~-mixing. I t  is not clear that  pushing our method 

further will yield a p-mixing process as well. 
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2. A c o n s t r u c t i o n  o f  b i l a t era l l y  d e t e r m i n i s t i c  f in i te  s t a t e  p r o c e s s e s  

Let X -- (Xn; n E Z) be a sequence of independent, identically distributed 
1 random variables with common distribution function P(X1 = k) = 5 for k = 

0, 1, 2. In this section we shall describe a construction method to define a new 

process (Z,~; n C Z) as a factor of the independent process X, the state space 

being E = {0, 1,2,  (2, 0), (2, 1), (2, 2)}. In special cases, this factor process turns 

out to be bilaterally deterministic and strongly mixing (Section 3). 

The three basic ideas in our construction are as follows: 

We first introduce markers for X as a finite union of cylinder sets each 

containing subblocks of 2's of certain lengths N C J,  J a fixed subset of N. 

Then, in between certain pairs of successive markers associated to N, we code 

the parity vector of points which are marked in this way. The components of 

the pari ty vector are the mod three sums of the coordinates (in between the two 

markers) at locations whose differences are a multiple of K ( N )  where K(N)  is 

some fixed odd integer. The parity vector allows to rewrite subblocks of length 

K(N)  within the markers, once all other coordinates in between the markers are 

known. This will yield a bilaterally deterministic stationary process, provided J 

is thin enough. 

In order to achieve the strong mixing property, we need to create enough ran- 

domness in the construction (equivalently, not to lose too much of randomness 

of the i.i.d, process X). Let two consecutive markers associated to N be fixed. 
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The coordinates of length log (N) following the subblock of 2's of length N de- 

termines a (random) subblock of length K ( N )  in the second marker and this 

subblock will be added (rood 3) to the parity vector. This means that the sub- 

block of length K ( N )  thus obtained still has the information needed to recover 

a subblock of length K ( N )  in the original sequence, but also becomes in a cer- 

tain way 'random'. To make this more precise observe that we cannot expect 

stronger mixing properties than p-mixing (i.e. ~z- or C-mixing (see [2])). Thus the 

measures of intersections of cylinders in the past and future cannot be uniformly 

approximated by the corresponding product measure. In fact, it will turn out 

that these intersections are either empty or have measure equal to 3 g (g )  times 

the product measure. Moreover, for a cylinder in the past, the number of non- 

empty intersections with cylinders in the future is approximately 3 -K(N) times 

the total number of such sets. 

We now start with a detailed description of our construction. 

Let K and N be positive integers with K _< N and log N an integer. Here 

and elsewhere in this paper we take logarithms to base 3. The (K, N)-marker at 

time t E Z is the event Et (K, N) defined by 

X l = 2  i f l = t - 1 ,  t -  2 , . . .  , t - N ,  

Xt~2  ifl=t, t + l + l o g  N, 

t - N - I - j ( K + I )  for j = 0 , 1 , . . . ,  N. 

Clearly P[Et  (K, N)] = 2 N+3 3 -2N-3. 

We define some notation to describe (K, N)-markers, suppressing the depen- 

dence on (K, N). This dependence will be clear from the context when we use 

it. 

The smallest coordinate restricted by the marker we write as a( t )  = t - N - 

1 - N (K + 1), the largest coordinate of the marker is w(t) = t + 1 + log N. The 

length of the marker is denoted by A = w(t) - a( t )  + 1 = N ( K  + 2) + log N + 3. 

Also set 

I ( t )  = {u: t -  N -  1 - j ( K  + 1) < u < t -  N -  1 - ( j -  1 ) (g  + 1) 

for some j,  I _ _ j _ < N }  

which are the free coordinates in the beginning of the marker. Similarly the free 

coordinates at the end of the marker are 

~(t )  = {u: t < u < t + log N + 1 } .  
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Now fix a strictly increasing sequence of positive integers {Ni; i > 1} with 

log Ni an integer and fix integers Ki <_ Ni, i _> 1. Write a i ( t ) ,  w~(t), Ai, J i( t )  

and Ii(t) accordingly for (Ki, Ni)-markers at t ime t. Define the waiting t imes Ti 

(for the process X)  by 

Ti = inf {t: a i ( t )  > 0, Et (g i ,  Ni) occurs}. 

Note that  P(Ti < e~ for every i > 1) = 1 and even E T i  < c~ for each i _> 1. 

This is in the proof  of our first lemma. 

LEMMA 1: For fl, e > 0 there is an io such that for each i >_ io there is a 7 

satisfying 

P ( f l <  T~ < 3') _> 1 - e .  

Proof'. In order to see that  E Ti is finite, first note tha t  the length Ai of 

a (Ki, Ni)-marker  is less than 2N 2, because Ki <_ Ni. Next,  define 7~i = 

inf {t >_ 1: a i ( 2 t Y  2) > 0 E2N2t(gi,  Ni) occurs}. Note tha t  7='/ < cr a.s. 

and tha t  7~i is a geometric random variable, since the events E2N~t(Ki, Ni) for 

t = 1, 2, 3 , . . .  are independent .  Therefore 

Ti <_ 2N2 Ti 

and E Ti < oc. 

Choose i0 so large tha t  for i _> i0 

f12 gi+3 3 -2N' -3  < r  

and then choose 3' so large, depending on i, tha t  

Then  

ETi < e3"/2. 

P(Ti < fl or 7 <_ Ti) <_ P(T~ <_ fl) + P(T~ > .,/) 

ET~ 
<_ flP(E2Ny(Ki,  Ni)) + 

7 
<_c. II 

P(fli < cq(Ti) < ~i(Ti) < 71) > 1 - 2 - i - 4  

By the above lemma, we can find an increasing sequence J = {Ni: i > 1}, 

log Ni E N, and positive integers fli < 7i, such tha t  for any choice of Ki <_ 

log Ni, Ki Too, 
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and that  

3i + A, < "~i < / 3 / + 1  - A i+ I  and Ai+l > 3Ai + 2"qi. 

We further assume that  the sequence Ni grows fast enough tha t  

E n2 3-n/2 < 2 - i - 3 .  

n>Ni 

Now we define the process Z = {Z,,: n �9 Z}. 

We will set Z,~ = Xn unless for some i _> 1 all of the following occurs: 

(1) Et (Ki, Ni) for some t with t - Ki < n < t - 1; 

(2) Es (Ki,  Ni) for some s < t with 2~i < t -  s < 27i and for all r, s < r < t, 

E~(Ki, Ni) does not occur; and 

(3) if E~(Ki,,  Ni,) occurs for i '  > i, then either r+Ai ,  < ~i(s)  or r - A e  > wi(t). 
If  conditions (1), (2) and (3) are satisfied we set Z ,  = (2, p), where p is defined 

as follows. 

Define l = t - n. We say the choice determined by the marker at s is 

log N, 

q = q(x,s) = E Xs+u 3U-1 

u=l 

s o 0 _ < q < N i .  We set 

where 

p = Xai(t)_l_q(Ki..F1)_t_ l dr 

zn  = (2, p) 

E X~,(~)+t+jg, (mod 3). 
j :  O < j K ,  <(~, ( t ) - l -~i  (8)- Ki 

Note that if j '  is fixed as in the sum and u = wi(s) + l + jKi,  then X~ is 

determined by Zn and the other values of Xr appearing in the definition of p. In 

particular, Xu is determined by the values of {Zr; [r - u I >_ Ki}. 

Formally, let 

F~=U U {Et(K,,Ni)N 
i>l t-Ki<n<t_ _ - I  ~ 

2Bi<t--s<2~q 

wi(t)+Ai, 

(2.1) A'"NEt_I(K~,Ni,C] f3 ~ ~ E~(Ke,Ni,) c) }; 
i'>i r=ai(s)--A i, 
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then 

Z,, = (X,~,p)lg. + X,~(1 - 1F.).  

Let - o o  < a < b < c~ and define 

,7b = a (X~;  a < u <  b) and G~ = a(Z, , ;  a < u < b ) .  

We have tha t  9r~ C 6~ for all a, b and, by construct ion,  9 r_~  = ~ _ ~ .  

Define 

t, = inf{t _> 0: Et(K,,  Ni) occurs} and si = sup{s  < 0: Es(K~, Ni) occurs}. 

Note tha t  ti <_ Ti (defined before) for all i _> 1. 

For l > 1 define Cl to be the event such tha t  

(i) v i  > 

fli < -wi(si)  < - a i ( s i )  < 7i and fli < a i ( t i )  < wi(ti) < 7i; 

and 

(ii) Vi _> l, ~ no str ing of consecutive N j 2  occurrences of "2" in the {X,,} 

process within Ai of 0 to the right and also no such str ing of "2"s to tile 

left of 0. 

Observe tha t  oi1 Ct for each i _> l 

Zt , - i  r {0,1,2}, 

i.e. tile Z-process differs fi'om the X-process.  

A m i x e d  c y l i n d e r  is all event of the form 

A = { X , , = a , . , Z . = b .  f o r u E I ,  v E  J}  

where I, J C_ Z are tinite and disjoint and 

a~ E {0.1,2},  b,.E { 0 , 1 , 2 , ( 2 , 0 ) , ( 2 , 1 ) , ( 2 , 2 ) } .  

If  J = r A is an X-cyl inder  and, if I = 0, A is a Z-cylinder.  

If A is a mixed cylinder and K C_ Z, denote 1rK(A) to be the project ion of A 

onto the K-coordina tes ,  tha t  is 

7rK(A) = {X,, =a,,; Z ,  =b~ for u E I rqK,  v E JClK} .  
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Define ?/t to be the a-algebra generated by all mixed cylinders A with coordi- 

nate set [0, w~ 0 (t~ 0)] for some i0 > l and X-coordinates for all u, 

wi(ti) < u < ai+l(ti+x) Vl < i < io, 

0 < u < a t (h )  

and A n Ct r O. Let E[ = the event that Et(Kt ,  Nt) occurs for the t for which 

a d o  = o. Set 

D ,  : F l ( t ,  > Y?} n _< - x , } .  
i>l i>l 

We have 

LEMMA 2: 
(1) -~ '  T -~'+A' g - o o n C ~ c  -oo n Q ,  

(2) 9AC~ n Cl C ?'[l (1 el ,  

(3) 6 -A ' - I  M E[ n Dl -1 - - o o  = . r : o o  n E~ n Dr. 

Proof: (1) We must show that  for j <_ -j31, Zj conditioned on Cz is 9vZ~ +A' DCt 

measurable. Fix j <_ -~t .  

Let F = Fj where Fj has been defined in (2.1). Then 

Zj = (X j ,  u) 1F + Xj (1  - 1F) 

where u is, by definition, 9c~oo-measurable. Thus it suffices to show that 

F c~ C~ E ~c-~,+A, n Cl 

and that  

F c n Ct E .~-~+A, n Cl. 
- -OO 

For i > 1 and t with 1 <_ t - j < Ki one has: 

(i) If i < l, 

N C - -OO --OO " Et (K , ,  i ) , E t ( K , , N i ) E  .t'~:~[] C ~-J+^' C .~-0,+h, 

(ii) If i > l, by definition of Cl and since t < -/3z + K~ < 0, 

E t ( g i ,  Ni)  c N C~, E t ( g i ,  N,)  n Ct E 9r-__~s n Ct. 
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Using the definition of Ct it is straightforward to see that  

i > l  t K < t  1 

2ill < t -  s<2q'i 

-fi t-A,,  wi(t)+A,, 

n n Fi n n 

i'>max(i,l) r = a l  (s)-A~,  i < i '  <l  r=c~i (s)-A,~ 

and by (i) and (ii), (1) follows. 

(2), (3) The proofs are similar to (1) and left to the reader. 

LEMMA 3: P(Ct) >_ 1 - 2 -t .  

Proof: For a point in C~, there is a string of "2" of length Ni/2 for i > l within 

A~ of the origin or the closest markers to zero are not in the appropriate intervals 

defined by fli and 7i. Therefore, by the choice of fl~ and 7i, and since Ti < ti, 

p(cr)  _< 2 ~ 2-'- '  + 2 ~ A, 3 - N , "  
i>l i>l 

_< 2 - t -2  + 4 ~ N? 3 -N,/2 ___ 2 -~. . 
i>t 

Z T H E O R E M  1: { n }  . . . .  aS constructed above is bilaterally deterministic. 

Proo~ We must show GZ~ v G~ = G_~. Since G ~  = ~'-~oo, it is enough to 

show that every 9t'~_~.1 cylinder is in ~ - ~  VG~. To this end it is enough to show 

that every cylinder of the form A = {X~ = a} for a E {0, 1, 2} and - n  < u < n 

belongs to G - ~  v G ~ .  Let x E A. Since P(U~=I c t )  = 1 there is an l so x E Cl 

with probability one. Find l' >_ l so Ke > 2n. Then by our construction X~ is 

determined by finitely many coordinates of 

{z,,: Iv - ul > 2,,}. 

Let the corresponding cylinder set in G - ~  V ~ be denoted by A(x).  Thus 

a.s. A is a countable union 

A = U A(x) 
Z 

and belongs to G_--r Y G~. I 
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3. T h e  s t r o n g  mix ing  p r o p e r t y  of  {Z~}nez 

In this section we prove the strong mixing property of the process {Zn}~ex 

constructed in Section 2. 

o o  THEOREM 2: Let ~ > 0 so that ~ = 1  ~i < oo. Under the assumptions in Section 

2, and if  
~o 3K ~ 

i m l  

the process Z = {Z,; n E 7/,} is bilaterally deterministic and strongly mixing. 

In the remaining part we shall prove this statement. To get an early idea of 

what has to be proved and how to reduce the problem, the reader may consult 

the proof of Theorem 2 at the end. We begin with the definition of frames. 

Definition: Let l < L be integers. 

A f r a m e  is an X-cylinder S = {X~ = a~: u E I} with times sn < SL-1 < 

" '"  < Sl < 0 ~ tl < t / + !  < " ' "  < t L SO that: 

(1) S C_ E~,(Ki, Ni) N Es,(Ki,  N~) (l <_ i < L) and if si < r < ti then 

S rh Er(K~, i~) = O. 

(2) I = (u  e [~L(sL),~L(tL)]: ~ r &(s~),~ ~ I,(t~),l < ~ < L}. 

(3) s n  c~ -r O. 
We denote the forward frame of S 

S + = { X ~ = a ~ : u E I r ~ [ 0 , o e ) }  

and the backward frame of S 

s -  = { x , ,  = ~: ~ e z n  ( -oo ,  o)}. 

Note that  if S(1), S(2) are frames with times 

SL(k) < SL-~(k) < ' "  <_ s~(k) < 0 <_ tz(k) < . . .  < tL(k) (k = 1 ,2) ,  

then S(1)-  N S(2) + is also a frame with times 

sL(1) < sL_~(1) < . - .  < s~(1) < o <_ t~(2) < - - -  < tL(2).  

Also, by independence, we have for any frame 

P(S)  = P ( S - )  P(S+).  

In the discussion that follows let l < L be fixed positive integers. 



Vol. 95, 1996 BILATERALLY DETERMINISTIC PROCESSES 125 

Definition: Let S + be a fixed forward frame (with indices l < L) and let l _< 

io _< L. Define s to be the set of all s tep functions f = ~ fA1A such tha t  

(i) 0 _< fA _< 1 and A has coordinate  set [O, WL(ti)], 

(ii) A is a mixed cylinder, A C_ S +, 

(iii) A has Z-coordinates  for u E U~~ - Ki - 1, ti), and 

(iv) A has all other  coordinates  in [0, wL(tL)] as X-coordinates .  

Note tha t  the representat ion f = ~ fA1A is unique (if each A appears  at  

most  once). 

As a convention we set 

s  1) = { f  = ~ fA1m: A is an X-cyl inder  with [O, WL(tL)] 

as coordinate  set and A C_ S+}.  

For the next par t  of the discussion we fix a f rame S with t imes 8 L • 8L_ 1 < 

�9 " <~ Sl <: 0 ~_ t t  K " "  "~ t L - 1  K t L .  Let Bo be a (disjoint) collection of 

X-cyl inders  wi th  coordinate  set [OtL(SL)  , --1] and contained in S - .  

Let I _< io _< L and let f E s with canonical representat ion f = ~ fA1A. 

Let B be one of the cylinders in Bo and A one of the cylinders in the canonical 

representat ion of f .  Recall tha t  7rg denotes 'p ro jec t ion '  onto the K-coordina tes .  

Set 

B = ~'j,o(8,o)C (B)  N/r[0,a,o(t,o)_l] (A), 

and 

If 

A = rZ,o(t,o)C o 7r[,,o(t,o),O~ ) (A) 

A =  [~r[t,o_N,o,t,o_l]o(A)] N{X~, = 2 : t i o -  Nio <_ u <_ t i o -  1}. 

~r[o,~,o(t,o)_l ] (A) = {X,, = a,,, Z ,  E by; u C U, v E V } 

set 

D = {Xu = a~,, Xv = II(bv): u E U, v E V} 

where I I (k)  = k = II((2,  k)) (k = 0, 1, 2). 

Let 

/0 ---- 7rJ, o(S,o)C (B)  N D. 

Finally for A, B as above set 

A'  = ~-[o,,~,o(t,o)_l ] (A) = ~'[o,,,o (,,o )_1] (B).  
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LEMMA 4: Using the notation developed and for H E a(X~: u E Iio(tio)) and 

G E a(X,~: u E Jio(S,o)) we have: 

(a) I f G n B n H n A ~ O  then 

(1 -- 2 - L )  P(G) P(H) P(B) P(A) ~ PIG n ~ n H n -A] 
<_ P(G) P(H) P(B) P(A); 

(b) ( 1 -  2-'0) P(/~) _< P(B)  _~ P(B); 

(c) (1 --  2 - L )  P[A'] P[A] _< P[A' n A] < (1 - 2 -L) - Ip[A '] P[/]]; 

(d) (1 - 2 -L) 3 -KN 3 -K P[A'] P[.4] _< P[A' n H n -A] 

< (1 - 2-i~ -KN 3 -K P[A'] P[~t]; 

(e) Let M denote the number of cylinders in Bo n B with coordinate set 

[-L(SL),-1], then 

- -  M - 
(1 - 2 - L )  ~ M  p [ ~ ]  PiB] _< P[Bo n f~ n -B] _< ~ P[A] P[B] .  

Proof: (a) Let E : ~r[~L(SL),~L(tL)]C (CL). E is measurable with respect to 

.~_~SL)--i V ~n(tn)+l and P(E) > P(CL) > 1 2 -L. 

Let z be an atom of j~_~sL)-I V . ~ , t  ' , with z C E. By the construction of 
L (  L ) I  

{Z,} and since G n B n H n A ~ 0, 

H n ~ n G n ~ n z = H n A n G n B n z  

(that is, on H n .4 n G n [~ n z, Zt,o_l r 2). 

Thus P(H n A n G n -B I z) = P(H) P(A) P(G) P([~). 

Integrate over z E E: 

(1 - 2 - L )  P(H) P(A) P(G) P(B) 

<_ P(E) P(H) P(A) P(G) P(B) 

= /E P ( H n A N G N - B [ z ) P ( d z )  

<_ P(H N A N G N B )  

< P(H) P(A) P(G) P([~). 

The last inequality follows because H N A n G n B ~ q}, so H N A n G n B _c 

H n . 4 n a n / } .  
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(b) Argue as in (a) with E replaced by 7r[~L(sL),~,o(t,o)_l]r and 
. T ~  8L)-1V ~-~(tn)+l replaced by jr~_~n)--I V .~oo 

- ~ ' o  ( t~o)"  

(C) Use Lemma 2 (3) with l replaced by io and the 0-coordinate replaced by 

~o(t~o). 
(d) Let A', A, H be fixed. 

Let { Qj: j E J '  } be t he set of X-cylinders with coordinate set [a L (s L), -- K~o- 1] 

on some backward frame. Let QO be the unique X-cylinder with coordinate set 

[~L(sL),--1] so 

QjnA'n-AnH=Q~ ~0. 

Also A' n QO ; a n ~ j  for some unique G ~ ~J'~ ~ ~,o and 8 j  = QO n A'. 
io-~- 

Then by (a), and since the union over all Qj has measure one, 

P(A'nHn--A) = ~ P[A'nHn-AnQj] 
J 

= E P[A' N H n--A N Q~ 
J 

= E P[-J~ClGNB---jNH] 
J 

>_ (1-  2 -~) ~ P(a)P(A)e(H)P(Bj) 
J 

= ( 1 -  2-L)3 -NK E P(A)P(A')P(Q~ 
J 

= (1 - 2-L)3-NK3 -K P(A)P(A') E P(QJ) 
J 

= (1 - 2-L)3-NK3-Kp(A)P(A'). 

The upper bound is similar. 

(e) Repeat the argument for part 

probability space replacing H. | 

(a) with A replacing A and the entire 

KEY LEMMA: Given S, Bo, f -- ~ fAIA C s as above, define g C E(io - 1) 

by the conditional expectation formula 

g=A( a an.  
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Then t'or any 6 > 0 we have 

~ o f  d P -  fBo gdP 
4 �9 3 K'o ) 

_< N~o6---- ~ + 46 + 2 0 . 2  -~~ P[S] 

and 

Proo~ 

N~oh--------- ~ + 46 + 2 0 . 2  -i~ P[S+] .  

During the proof  use K for Ki o and N for Nio. By definition 

fBo f d P = Z fBonAnB laP' 
A,B 

where the s u m m a t i o n  extends over all A which can be obta ined from A's  in the 

representa t ion of f and over all B which can be obta ined for a fixed A from a 

set B C Bo. 

Fix such an A and B. Define G(B) = {G: G = {X~ = c~: u E Jio(S~o)}} 

so B = U a ~ c ( ~ )  G o B. Also on each cylinder C C_ B O B the r andom choice 

q(C) = q(x, sio) is well-defined giving us a subset  

M(B) = M = {q(C): C C_ B n B} c_ {0,1, . . . ,  N - 1}. 

To complete  our nota t ional  scaffolding define 

7-/(A) = {H: H = {X~ = c~: u E Iio(tio)}}, 

so  

A =  U HnA. 
HET'-/(A) 

Now 

fB fdP= ~ SAPIBoAANBNA l 
oNANB A :  

(3.1) 

Ag~ 

- - E  E 
HET-t(~) ae~(g): 

an~C_non~ 
~nAnanB#r 

<-Z Z 
Gn~C B o n~ 
HNAnOnB#~ 

f~nHnA' P[H n A n a n B] 

f-finHnA' P[H] P[G] P[~.] P[B] 
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by Lemma 4(a). 

Now we use Chebychev 's  Inequali ty to estimate the number  of terms in the 

second sum so tha t  H N A A G (3 B # 0. 

Parenthetical ly let ~ = {0, 1, 2} K a n d  fix wo E 12. By Chebychev 's  Inequali ty 

the number  of words w = (Wl, . . .  , WN) E ~l g satisfying 

(1 - 6) [M[ 3 -K _< [{k E M: wk+, = wo}[ < (1 + 6) IMI 3 -K 

3 s: 3 K N  is at least (1 - ~-~-~) where ]. ] denotes cardinali ty and 

MC_ { 0 , . . . ,  N - l } .  

This is seen in the usual way: Choose w E ~N uniformly, i.e. with probabili ty 

3 - K N .  

Let W(w) = ]{k E M:  wk+l = wo}l, then E[W] = IMI 3 - g  and Var [W] = 

IMI 3 - K  (1 - 3 -K) .  Hence 

Prob [ I W  - E[W][ < [M[ 3-K6] > 1 - IMI 3 - K  (1 - 3 - K )  3 K 
_ IMI= 3_2K 62 _> 1 -- [MI6 ~ ,  

3 K 3 K N  so the number  of such ~ is > (1 - ~ - - ~ )  . 

Now a word w E 12 N determines a cylinder H E H(A)  canonically (recall 

tha t  H is cr(X,~: u E Iio(tlo))-measurable and Is = KN). The preceding 

calculation shows tha t  for at least 

3K ) 3 KN cylinders H E H(A)  
1 ~21M(~)I 

we have 

(1 - 6) IM(B)I 3 -K _< I{G E G(~): G n ~ c B0 n ~ ,  O n ~ n H M A # 0}] 

< (1 + 6) JM(~)[ 3 -K. 

Let Fo = {H E 7-/(A) with this property}.  
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Continuing with (3.1) and using Lemma 4(b), we get 

Isr.  J. M a t h .  

BonAnB f d P 

<- ~ Z f~nHnA' P[H] P[G] P[,4] P[/3] 
H67/(A) a e g ( ~ ) :  

Gn'~C Bon'~ 
n n'Xn ar'-,Y:~ 0 

<3_KNN_ ~ (1+~) 3_~ IM(~)I 
- ( 1  _ 2 - i o )  

HEFo 

3 K 3KN 
+ (1 - 2-/~ - I  3 -KN N-x3 -K 

521M(~)1 

&n.nA, P[A] P[B] 

Z P[A] P[B]" 

a n~C_ B e n~  

(We use the fact that 0 <: fA < 1.) 

The lower bound is similar, using Lemma 4 again: 

B f d P >  
oAANB 

(1 - 2 -5)  3 -KN N -1 (1 - 6) 3 -K IM('B)I 
H6Fo 

f~n .nA'  P ['41P[B]" 

Thus 

I s  f d P = 3 - g g N - 1 3  -K IM(B)I ~ ZTnHnA, P[ ' z i ]P[B]+oi  3 - g  
oAAAB HET~(A) 

(2"3K 2 -io) P[/i] P[B]. where levi < k~-~ + 25 + 2 

Now sum over all A C_ A' n ,4 and get 

; since the number of such A is 3 K. 



Vol. 95, 1996 BILATERALLY DETERMINISTIC PROCESSES 

On the other hand, using Lemma 4(b)-(e) 

/BonAn~ d P 
g 

=/Bon~n~ P[A' n ~]-1 

= P[A'NA1-1 E 
ACA'Dfi, 

< (1 - 2 - L )  - ~  

P[A'IP[.4] E ACAIO$ 
A=AtA'~NH 

< (1 - 2-i~ - t (1  - 2-L)-1 
- P[A' ]P[ f i , ]  

E lAP[A] 1A,nA dP 
AC_A'Afi, 

f A P[A] P[Bo n f~ n -B] 
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The lower bound is similar: 

" 

BoAAAB d P 
g 

So 

B gdP = 3-K3-KNN -1 [M(B)[ P[.41P[B] 
on~.n~ ACA'Afl 

\ N62 + 26 + 1 0 . 2  -i~ 
A,B 

) k, N6 ~ + 4 6 + 2 0 " 2  `0 P[S +]PIS-] 

_(43  ) 
\ N6 ~ +46+20.2  -i~ P[S]. 

where a2 _< (8-2-i~ P[B-]. (Note that there are at most 3 (K+UN sets 

A C A' NA.) 
~ _ _  

So summing over A, B gives 

_< (1 - 2-i~ -2 3-KN3-KN -1 IM(B)I P[,41P[B] 

fA P[A' O -A O H] IM(B)I P[,4] P[B] 
N 

E fA 3-KN3--K P[A'] P[A] ]M(B)] p[~] p[~] 
N 

AC_A'Afi, 
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Taking B0 = S -  and summing over all backward frames gives 

LEMMA 5: For each : > 0 there is an lso V L > I and S, 13o, f = ~ f A 1A E F..( L ) 
as above we have 

I /Bof d P -  P[Bo] f ] dP I < ~P[S]. 

Proof." Using the Key Lemma L - l + 1 times we find a function h E s - 1), 

so h E jc~o and 

i /Bo fdP- - /BohdPl  < ~ (20"2-i +46,+4"3K' ) P[S], 
- ,=, V---N( / 

IP[Bol f f d P - P [ B ~  62--~i P[S], 

since/30 c S - ,  FIB0] P[S +] _< P[S-] P[S +] = P[S]. 
Also since B0 E ~--1_o~, h E ~ ' ~  they are independent, so 

o 

The above sum is the tail of a convergent series, so I may be taken large enough 

that  the sum is less than e/2. I 

Proof of Theorem 2: We show that,  given e, there is an n such that  if B1 C G - ~  

and f is ~ - m e a s u r a b l e ,  0 < f < 1, then 

I/B1SdF-P[Bx] f YdPI <e. 
Fix e' > 0. Find l so P[CI] > 1 - e' and choose n = 3(A, + ill). Also, assume l 

is large enough that  the preceding lemma holds with e ~ for e. 

Note that  

IfBfdP-P(B') f .fdPl<l/mnc fdP-P(BxnQ) fc f dPl+3~" 
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and hence 

~ N Cl-measurable ,  

(3.3) 

it suffices to show tha t  for B2 E ~2~o VI Cl 
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and f which is 

B f d P - P ( B 2 )  / f d P  <e'. 
2 

_ T -f31 +AI , - - ,~ Since n > max{~3l, AI}, by L e m m a  2 it suffices to show (3.3) for B E .  -oo , ,~l 

and f "/'/l n Cl measurable .  Finally, we see tha t  it suffices to show (3.3) for B3 
a finite union of X-cyl inders  in ~-_ _-~+A~ n Cl and for f l  = ~ A  disjoint f A l a  with 

0 < /A < 1 and A a cylinder set in 7/l so tha t  A n C1 r @. Since the frames S 

with indices l and L form a disjoint par t i t ion  of Ct, it suffices therefore to show 

tha t  for e' sufficiently small  

/B l s + f l d P - P ( B 3 A S - )  f s  f l d P  <e'P(S).  
a r t S -  + 

But this s t a t ement  has been shown in L e m m a  5, for l large enough with Bo = 

B3 Vi S -  and f = l s+  f l .  | 
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