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ABSTRACT
Triviality of the two-sided tail field of a stationary process is not an invari-
ant property under factorization ([4]). In this paper we give an example
of a bilaterally deterministic process with finitely many states which is
strongly mixing. This extends and complements a result of Bradley ({1]).

1. Introduction

Let X = {X,}32_. be a finite state stationary process. A factor process of
X, f(X), is a stationary process Y = {Y,}32 __ which is obtained as follows:
Let fp: X — finite set, fp measurable, Yp = fo(X) and Y, = fo(o™ X) where o
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is the shift, (¢X); = X;41. Y is an isomorphic factor if f may be taken to be
invertible.

A property of a stationary process is an invariant property if it is also shared
by all its factor processes. For example, the Kolmogorov zero-one law is an
invariant property. This law says that the tail o-algebra is trivial. A stronger
property is that the two-sided tail is trivial. This o-algebra is defined as follows:
Let F;f = 0(Xn, Xnt1,-..) be the o-algebra generated by X,,, X,41,... and
F. = o(X_n, X_n_1,...) be the o-algebra generated by X_,,, X_,_1,....
Then, the two-sided tail of X is defined by

oo
(| 7+ v 7.
n=1
If X is an independent, identically distributed (i.i.d.) process, then the two-
sided tail is trivial. But, it was shown by Ornstein and Weiss ([4]) that this is
not an invariant property, and that any stationary process has a factor (actually
isomorphic) process such that the two-sided tail is (up to sets of measure zero)
the total o-algebra generated by the process. Such a process is called bilaterally
deterministic.

A mixing property, which Ornstein showed to be invariant, is the very weak
Bernoulli property (VWB). However, there are a number of mixing properties
known in probability theory which are non-invariant. One example is a-mixing
(strong mixing or Rosenblatt mixing ([5])) which says that given ¢ > 0 there
exists ng(e) such that, if n > ng(e),

sup |P(ANB)—- P(A)P(B)|<e.
AEFY; BEFT
It was shown in [6] that there is a VWB process which is not ¢-mixing (see [2]
for a definition and the relation to strong mixing). In fact, VWB processes need
not to be a-mixing as a variant on the examples given in [4] show. On the other
hand a-mixing does imply the Kolmogorov 0-1 law.

A stronger mixing condition than e-mixing is p-mixing, which is the following

(see [2]): Given € > 0 there exists no(e) such that for n > ng(e)

sup {p(g, h): g € L2(X) is F;}-measurable, h € £3(X) is F, -measurable } < ¢,

where p(g, h) is the correlation coefficient. Bradley ([1]) constructed a process
which is bilaterally deterministic and yet is p-mixing. However, the constructed
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process has the disadvantage of being a continuous state process. He left it as
an open problem to construct a finite state process with such properties. We
give a partial answer to this problem by constructing a finite state bilaterally
deterministic process which is a-mixing. It is not clear that pushing our method

further will yield a p-mixing process as well.
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2. A construction of bilaterally deterministic finite state processes

Let X = (X,; n € Z) be a sequence of independent, identically distributed
random variables with common distribution function P(X, = k) = 3 for k =
0,1,2. In this section we shall describe a construction method to define a new
process (Z,; n € Z) as a factor of the independent process X, the state space
being E = {0, 1,2, (2,0), (2,1), (2,2)}. In special cases, this factor process turns
out to be bilaterally deterministic and strongly mixing (Section 3).

The three basic ideas in our construction are as follows:

We first introduce markers for X as a finite union of cylinder sets each
containing subblocks of 2’s of certain lengths N € J, J a fixed subset of N.

Then, in between certain pairs of successive markers associated to N, we code
the parity vector of points which are marked in this way. The components of
the parity vector are the mod three sums of the coordinates (in between the two
markers) at locations whose differences are a multiple of K(N) where K(N) is
some fixed odd integer. The parity vector allows to rewrite subblocks of length
K(N) within the markers, once all other coordinates in between the markers are
known. This will yield a bilaterally deterministic stationary process, provided J
is thin enough.

In order to achieve the strong mixing property, we need to create enough ran-
domness in the construction (equivalently, not to lose too much of randomness

of the i.i.d. process X). Let two consecutive markers associated to N be fixed.
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The coordinates of length log (V) following the subblock of 2’s of length N de-
termines a (random) subblock of length K(/N) in the second marker and this
subblock will be added (mod 3) to the parity vector. This means that the sub-
block of length K{N) thus obtained still has the information needed to recover
a subblock of length K(N) in the original sequence, but also becomes in a cer-
tain way ‘random’. To make this more precise observe that we cannot expect
stronger mixing properties than p-mixing (i.e. ¢- or ¢¥-mixing (see [2])). Thus the
measures of intersections of cylinders in the past and future cannot be uniformly
approximated by the corresponding product measure. In fact, it will turn out
that these intersections are either empty or have measure equal to 35(Y) times
the product measure. Moreover, for a cylinder in the past, the number of non-
empty intersections with cylinders in the future is approximately 3-X(™) times
the total number of such sets.

We now start with a detailed description of our construction.

Let K and N be positive integers with K < N and log N an integer. Here
and elsewhere in this paper we take logarithms to base 3. The (K, N}-marker at
time t € Z is the event F; (K, N) defined by

X;=2 ifl=t—1,t-2,...,t—N,
X #2 ifi=t t+1+log N,
t-N-1-j(K+1) forj=0,1,..., N.

Clearly P(E; (K,N)] = 2N+3 3-2N-3,

We define some notation to describe (K, N)-markers, suppressing the depen-
dence on (K, N). This dependence will be clear from the context when we use
it.

The smallest coordinate restricted by the marker we write as a(t) =t - N —
1— N (K +1), the largest coordinate of the marker is w(t) = ¢+ 1+1log N. The
length of the marker is denoted by A = w(t) —a(t)+ 1= N(K +2) +1log N +3.
Also set

It)={wt-N-1-jK+1)<u<t-N-1-(j-1)(K +1)
for some j, 1<j< N}
which are the free coordinates in the beginning of the marker. Similarly the free

coordinates at the end of the marker are

Jt)={urt<u<t+log N+1}.
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Now fix a strictly increasing sequence of positive integers {NV;; 7 > 1} with
log N; an integer and fix integers K; < N;, ¢ > 1. Write a;(), w;(t), A;, Ji(t)
and I;(t) accordingly for (K;, N;)-markers at time ¢. Define the waiting times T;
(for the process X) by

T; = inf {t: a;(t) > 0, E; (K;, N;) occurs}.
Note that P(T; < oo for every ¢ > 1) = 1 and even ET; < oo for each i > 1.
This is in the proof of our first lemma.

LEMMA 1: For 8, > 0 there is an iy such that for each i > iy there is a ~
satisfying
PB<Ti<v)21l—e.

Proof: In order to see that ET; is finite, first note that the length A; of
a (K;, N;)-marker is less than 2N,-2, because K; < N;. Next, define ﬁ =
inf {t > 1: a;(2tN?) > 0 Eyn2¢(Ki, N;) occurs}. Note that T; < 00 as.
and that T} is a geometric random variable, since the events Eszt(Kiv N;) for
t=1,2,3,... are independent. Therefore

T; <2NET;

and ET; < .
Choose i so large that for i > ig

FoN+3 3=2N:=3 /9
and then choose v so large, depending on 1, that
ET; <ev/2.
Then

P(T; <B or v<T)<P(T<B)+P(T:27)
ET;

< BP(Exnz (Kiy Ni)) + <e. 8

By the above lemma, we can find an increasing sequence J = {N;: i > 1},
log N; € N, and positive integers §; < %;, such that for any choice of K; <
10g N.,', K,; T 00,

P(ﬂi < a,-(Ti) < w,-(T,-) < "/1') >1-— g~i-4
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and that
Bi+Ai <7 < Big1—Aipr and Ay > 3A + 27,

We further assume that the sequence N; grows fast enough that
> n?3rrcamd
nZN,’
Now we define the process Z = {Z,: n € Z}.
We will set Z, = X,, unless for some ¢ > 1 all of the following occurs
(1) E; (K;, N;) for some t witht — K; <n <t-1;
(2) E, (Ki, N;) for some s < t with 23; <t—s <2y, and forallr, s <r < t,

E.(K;, N;) does not occur; and
(3) if E.(Ky, Nyt) occurs for ¢/ > i, then either 7+ Ay < a;(s) or r—Ay > wi(t).

If conditions (1), (2) and (3) are satisfied we set Z, = (2,p), where p is defined

as follows.
Define | = t —~ n. We say the choice determined by the marker at s is

iog N;
qg=gq(z,8) = Z Xstu 3v!
u=1

50 0 < g < N;. We set
Zn=1(2,p)

where
> Xui(s)+14ik,  (mod 3).

P = Xo(t)+q(ki+1)H +
J 0K <o (1) —l—w; (8)— K

Note that if j' is fixed as in the sum and u = w;(s) + ! + jK;, then X, is
determined by Z,, and the other values of X, appearing in the definition of p. In

particular, X, is determined by the values of {Z,; |r — u| > K,}.

Formally, let

R=J U {E:(Ki,Ni)n

i>1t—K;<n<t—1
U ([Es(Ki,Ni) N Es41(Ki, N;)°N

28;<t—s<2v;
wi (t)+Ail

n---nEt_l(Ki,Ni)C] n) N

U>ir=ai(s)—Ay

(2.1) Er(Ki’xNi’)c) };
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then
Zn = (X,,,p)lpﬂ + Xn(l — 11-‘n).

Let —00o < a < b < o and define
Fé=o(X,;a<u<b) and G2 =0(Z,; a<u<b).

a

We have that 72 C G® for all a,b and, by construction, F2_ = G=_.
Define

t; = inf{t > 0: E,(K;, N;)occurs} and s; =sup{s < 0: E,(K;, N;) occurs}.

Note that ¢; < T; (defined before) for all 7 > 1.
For [ > 1 define C; to be the event such that
(i) Vi>1!

B; < —w,'(si) < ~ai(si) <v and j;< ai(ti) < wi(ti) < Y3

and

(ii) Vi > I, 3 no string of consecutive N;/2 occurrences of “2” in the {X,,}
process within A; of 0 to the right and also no such string of “2"s to the
left of 0.

Observe that on C; for each ¢ > {

Z{,—l Q {01 1a2}7

i.e. the Z-process differs from the X-process.
A mixed cylinder is an event of the form

A={X,=au, Zy=b,foruel, ve J}
where I, J C Z are finite and disjoint and
ay € {0.1,2}, b, €{0,1,2,(2,0),(2,1),(2.2)}.

If J =9, Ais an X-cylinder and, if I = ¢, A is a Z-cylinder.
If A is a mixed cylinder and K C Z, denote nx(A) to be the projection of A
onto the K-coordinates, that is

T(A)={Xu=ay; Zy,=b,forueINK, ve JNK}.
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Define H; to be the o-algebra generated by all mixed cylinders A with coordi-
nate set [0, w;, (t;,)] for some 79 > [ and X-coordinates for all u,

wi(ti) <u < ajpr(tivr) VI <i<dy,

0<uc< a;(tl)

and ANC; # 0. Let E] = the event that E,(K;, N;) occurs for the ¢ for which
Cq(t) = 0. Set
D; = ﬂ{ti > Nf} N ﬂ{s,- < —N,‘}.

i>! i>l
We have

LEMMA 2:
1) ¢-Anc c FAthng,
(2) gnC CHNG,
(3) GZA'nEIND = FZLNE/ND,.

Proof: (1) We must show that for j < —3;, Z; conditioned on C; is f:fc‘, Aatate)
measurable. Fix j < —(;.
Let F = F; where F; has been defined in (2.1). Then

Zj = (Xj, l/) 17+ Xj(l - ].p)
where v is, by definition, Fi «-easurable. Thus it suffices to show that
FncC e F-Bthng

and that
Fencie FZAMna.

For:>1and t with 1 <t — j < K; one has:
(i) Ifi <,

Ey(Ki, No)°, Be(Ki, Ni) € Fai) € FIEN ¢ LGN,
(i) If i > 1, by definition of C; and since t < - + K; <0,

E(K;, N0 Cy, E(K, N)nCie F-Bna..
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Using the definition of Cj it is straightforward to see that
Fna=) U {Et(KiaNi)
i>1t—K,<j<t—1

N U ([Es(KisNi)nEa+1(Ki,Ni)cn"'nEt—l(KisNi)c]
28:<t—3<2v;

—Bi—A; wi(t)+A;r
n N  E-(Ke,No)n ) N E,(K,.,,N,-,)°>}mc,,
i’ >max(i,l) r=a;(s)—A;r i< <l r=a;(s)— Ay

and by (i) and (ii), (1) follows.
(2), (3) The proofs are similar to (1) and left to the reader.

LEMMA 3: P(C))>1-27%

Proof: For a point in C}, there is a string of “2” of length N;/2 for ¢ > | within
A; of the origin or the closest markers to zero are not in the appropriate intervals
defined by 3; and ;. Therefore, by the choice of 3; and +;, and since T; < t;,
P(CH) <2 ) 277 42 ) A 37N/
i>! i>!
<272 44 ZN,? 3=Ni/2 <ot g
i>!

THEOREM 1: {Z,}3 __ as constructed above is bilaterally deterministic.

Proof: We must show G0 vV G2° = G . Since G = F=_, it is enough to
show that every .7-'"__;_11 cylinder is in G, VGZ°. To this end it is enough to show
that every cylinder of the form A = {X, =a} fora € {0,1,2} and -n <u<n
belongs to G5 vV G°. Let z € A. Since P(|J2, Ci) =1 thereisan!soz € C|
with probability one. Find I’ > [ so K > 2n. Then by our construction X, is

determined by finitely many coordinates of
{Zy: |v — u| > 2n}.

Let the corresponding cylinder set in GZ7. vV G° be denoted by A(z). Thus

a.s. A is a countable union

A= Alx)

and belongs to G~ V G ]
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3. The strong mixing property of {Z,},ez

In this section we prove the strong mixing property of the process {Z,}nez
constructed in Section 2.

THEOREM 2: Let 6; > 0 so that y .o, & < oo. Under the assumptions in Section
2, and if

oo

3K:

- < 0
2 b
léeN:'

i=

the process Z = {Z,;n € Z} is bilaterally deterministic and strongly mixing.

In the remaining part we shall prove this statement. To get an early idea of
what has to be proved and how to reduce the problem, the reader may consult
the proof of Theorem 2 at the end. We begin with the definition of frames.

Definition: Let ! < L be integers.
A frame is an X-cylinder S = {X, = a,: u € I} with times s; < sp_; <
< <0<t <ty < -+ <t so that:
(1) S C E;,(Ki, N\)N Eg (K;, N;) (I < i < L) and if s; < r < ¢; then
SNE.(K; N;)=0.
(2) I'={uelar(se)we(te)):u € Ji(s:),u € Li(t:), L <i < L}
3) SNC, # 0.

We denote the forward frame of S
5% = {X, =a,:u€ IN[0,00)}
and the backward frame of §
ST ={Xy=ayu€In(—o0,0)}
Note that if 5(1), S(2) are frames with times
sp(k) < spa(k) <--- < si(k) <0< (k) < -~ < tp(k) (k=1,2),
then S(1)~ N S(2)7 is also a frame with times
sp(1) <sp1{1) < < 5(1) <0< (2) < --- < t(2).
Also, by independence, we have for any frame
P(S) = P(S7) P(St).

In the discussion that follows let I < L be fixed positive integers.
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Definition: Let S* be a fixed forward frame (with indices [ < L) and let | <
ip < L. Define L(ig) to be the set of all step functions f = > fala such that
(i) 0 < f4 <1 and A has coordinate set [0,wr(t1)],
(ii) A is a mixed cylinder, A C ST,
(iii) A has Z-coordinates for u € U:‘;,(t,- —-K;—-1,t),and
(iv) A has all other coordinates in [0,wy,(¢,)] as X-coordinates.
Note that the representation f = 3 fala is unique (if each A appears at
most once).

As a convention we set

L(=1)={f= fala: Ais an X-cylinder with [0,w,(t.)]

as coordinate set and A C S*t}.

For the next part of the discussion we fix a frame S with times sy < s;,_1 <

<5 <0<t < < tpy < tp. Let By be a (disjoint) collection of
X-cylinders with coordinate set [ar(sr), —1] and contained in S~.

Let | <ip £ L and let f € L(ip) with canonical representation f =3 falyu.

Let B be one of the cylinders in By and A one of the cylinders in the canonical
representation of f. Recall that mx denotes ‘projection’ onto the K-coordinates.

Set

B= 7!'.]‘.0 (8ig)° (B) n W[O,Oio(tio)—ll (A)7 A= Wlio(tio)c ° ”[aio(tio),oo) (A)

and
A= [w[t‘.o_N‘.O ,tio_llc(Z)] N{Xy =2t — Niy <u<ty —1}.
If
T[0,aiy (tig)—1) (A4) = {Xu=0au, Z,€by; uel,veV}
set

D={Xy=ay, X, =M(b,):uelU,veV}

where II(k) = k =I1((2, %)) (k= 0,1, 2).
Let

B = T io (8i9)° (B) N D.

Finally for A, B as above set

A =00, (1) 1] (A) = T0,04, (1) -1] (B)-
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LEMMA 4: Using the notation developed and for H € o(X,: u € I; (t;,)) and
G € o(Xy: u € J;y(ss,)) we have:
(a) IGNBNHNA#D then

(1-2"%)P(G) P(H) P(B) P(A) < P[GNBN HN 4]
< P(G) P(H) P(B) P(A);

(b) (1—27%) P(B) < P(B) < P(B);
(c) (1-24) PL4] P[4] < P4’ 0 4] < (1—274)" PL4'] P[4
(d) (1—2"L)3-KN3-K p[A| P[A] < P[A'n HN 4]
< (1-2770)713-KN 3K p{4'] P[A];
(e) Let M denote the number of cylinders in By N B with coordinate set
[ar(sL), —1]; then
(1-27%) 4 PLA| P[B| < PIByn AnB) < 1

ip ip

P[4] P[B).

Proof: (a) Let E = mq,(s;)wr(ez))c (CL). E is measurable with respect to
sp}—-1 —
Forlu =ty g 1 and P(E) 2 P(CL) 2 1-271.
Let z be an atom of ff'&f“)_l VFS t1) With z C E. By the construction of
{Z,} and since GNBNHNA# 0,

HNANGNBNnz=HNANGNBNz

(that is,on HNANGN BNz Z, _1 #2).
Thus P(HNANGNB|z)= P(H)P(A) P(G) P(B).
Integrate over z € E:

(1-27%) P(H) P(A) P(G) P(B)
< P(

= [ P(HNANGNB|z)P(d?)
E

(HNANGNB)
(H) P(A) P(G) P(B).

<

v

<

The last inequality follows because HNANGNB # 80, so HNANGNB C
HNnANGnB.
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(b) Argue as in (a) with E replaced bY Tlag(si), aw(tig)—-1]¢ (Cip) and
Forlen=ly Feo ., replaced by FoLD Ty FE )

(¢) Use Lemma 2 (3) with ! replaced by iy and the 0-coordinate replaced by
iy (tig)-

(d) Let A’, A, H be fixed.

Let {Q;: j € J'} be the set of X-cylinders with coordinate set [ (s), —Ki—1]
on some backward frame. Let Q? be the unique X-cylinder with coordinate set

[QL(SL)V_I] S0
QNANANH=QINA'NANH #0.

Also A’ N QY = G N B; for some unique G € f::;’iiog Mo and B; = QINA.
Then by (a), and since the union over all Q; has measure one,

P(ANHNA) =Y PANHNANQ,
= P[ANHNANQY

=Y PANGNB;nH]
i

“5yS" P(G)P(A)P(H)P(B))
J
= (1-275)3"VK 3" P(A)P(A')P(QY)

= (1-275)3" VK3~ K p(A)P(4) Y P(Q;)
=(1-2"5)3-NK3-K p(4)p(4").

The upper bound is similar.
(e) Repeat the argument for part (a) with A replacing A and the entire
probability space replacing H. |

KEY LEMMA: Given S, By, f =3 fala € L(io) as above, define g € L(iy — 1)
by the conditional expectation formula

=Y (P[A'DA > fa P[A]) Lyni-

A'NA ACA'NA
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Then for any 6 > 0 we have
/ fdP—/ gdP’ < (ﬂﬂﬂzo 2*"0) P[S]
Bo Bo T\ N, 62
. 3K .
< (4 S +46+20-2"°) P[S*].

Jser=foar|< (5w

Proof: During the proof use K for K;; and N for N;,. By definition

fdP= f fdP,
/‘Bo ;B- BoﬂXﬁ’E

where the summation extends over all A which can be obtained from A’s in the

and

representation of f and over all B which can be obtained for a fixed A from a
set B C By.

Fix such an A and B. Define G(B) = {G: G = {X, = cu: u € J;y(3,)}}
so B = Ugeem G N B. Also on each cylinder C C BN B the random choice
q(C) = q(z, si,) is well-defined giving us a subset

M(B)=M={q(C):CCBnB}C{0,1,..., N -1}
To complete our notational scaffolding define

H(A) = {H: H = {X, = cu: u € I;y(t:y)}},

SO
A= U HNA.
HeH(A)
Now
/ __fdP= Z faP[BonANBN A
BonANB Ai_
ACA
= Y Y fanmna PIHNANGNB
HecH(A) GeG(B): _
GNBCBoNB
HNANGNB#9
(31) < Z Z fZnnnar P[H] P[G] P[“i] P[B]
HeH(A) GsC(E): _
GNBC BgNB

HAOANGNB#9
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by Lemma 4(a).
Now we use Chebychev’s Inequality to estimate the number of terms in the
second sum so that HNANGN B # 0.

Parenthetically let = {0,1,2}¥ and fix wp € Q. By Chebychev’s Inequality
the number of words w = (wy,... ,wn) € OV satisfying

(1-6) |M|37 5 <|{keM:wiy) =wo}| <(1+6)|M|37K
is at least (1 — 573]%4_]) 3KN where | - | denotes cardinality and
Mc{o,..., N-1}.
This is seen in the usual way: Choose w € QV uniformly, i.e. with probability

3-KN,

Let W(w) = |{k € M: wky1 = wo}|, then E[W] = |M| 37K and Var (W] =
|M|3~% (1 -37%). Hence

M|3~K (1 -37K) 3K
W — E[W]| < |M|3-K§] > 1~ >1———
Prob[l W]] < [M] ]_l ME37% 52 >1 Wi
so the number of such w is > (1 — %7) KN,

Now a word w € QN determines a cylinder H € H(A) canonically (recall
that H is o(Xy: u € I, (t;,))-measurable and |I;,(t;,)] = KN). The preceding
calculation shows that for at least

3K KN . A
(1 _ 6"’|M—(§)|> 3 cylinders H € H(A)

we have

(1-6)M(B)|3 ¥ <|{GeG(B):GNBCBy,NB, GNBNHNA # 0}
<(1+6) [M(B)[37F.

Let Fy = {H € H(A) with this property}.
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Continuing with (3.1) and using Lemma 4(b), we get

/ fdP
By NANB

< 2. 2. finmna PIH|P[G] P[A] P[B]
HeH(A) GEG(B): _
GNBCByNE
HNANGNB#Q
< kNN D K MBS faoune PIAPIB)
(1 — 2-%) Her
] 1 KN 19—-K 3K3KN Z ‘] ['—
+(1—27%) 1 3~KN y-ig-K = = ___ PJA] P(B].
e2IM(B)|
GNBC BgNB

(We use the fact that 0 < fg4 <1.)

The lower bound is similar, using Lemma 4 again:

/ fdP >
BoNANB

Q-27h) 3 KN -6)37 % [MB)| Y fanuna PIAIPBI.
HeF,

Thus

/ fdP=3"KNN-13-K |M(B)| Z fznmear PIAP[B) + a1 37X
BonNANB HeH(E)

where |aa| < (%% +26 +227%) P[4] P(B].

Now sum over all A C A’ N A and get

(3.2) /Bmmfdpz( > f,,) 3-KNN-13-K |M(B)| P[A] P[B) + oy

ACA'NA

! since the number of such A is 3X.
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On the other hand, using Lemma 4(b)-(e)

/ gdP
BynANB

=/ C_PANAT S faPlA 1,0 dP
BoNANB

ACA'NA
=PANA™ > faPlA|P[BonANB)
ACA'NA
(1-2-f)! ) |M(B)| (B)I
SW CZM fa P[A'nAn H] =2 P[A] P[B|
a1 278 N LT
SO -2) T A%:Mf,,:s KN3-K pi4'| P[A] "~ P[4] P(B)

< (1-27%)"23-KN3-KN-1|70(B)| P[A] P[B] ( Z fA)'

ACANA

The lower bound is similar:

/ __gdP >(1-271)23-K3-KENN-1|)M(B)| P[4] P[B] ( > f,,).
BonANB

ACA'NA
So

/ gdP =3 K3 KNN-1 |M(B|P[A]PB]( > f,,)+a2
BonANB

ACANA

where oy < (8- 27%9)P[A] P[B]. (Note that there are at most 3(K+UN gets
AC A NA)

So summing over A, B gives

fdP— | gdP|<
By By

/ __fdP—/ ~_diPl
i BonANB BonANB

K
<> P|A] P[B] ( +264+10-2° *°>

|

iB
4-3K ; + _
=( s T 46+20- zo) P[S*] P[S]
4.3K .
=( 5 +46+20-2"°> PIS).
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Taking By = S~ and summing over all backward frames gives

. 3K .
y/fdP—/gdPlg (4N§2 +4a+20-2—*°) Pis*].

LEMMA 5: Foreache > 0 thereisanlsoVL >1land S, By, f =5 fala € L(L)
as above we have

/deP—P[Bo]/fdP < eP[S].

Proof: Using the Key Lemma L — [ + 1 times we find a function h € L(I — 1),
so h € Fg° and

— ; 4-3%
fdP—/ th'g (20-2“+46,-+——)PS,
Bo Bo 12:; 87N; 5]
- iy 4.3k
P[By] [ fdP—P[Bo] [ hdP|<) (20-2 +46£+—6?Ti P[S],

1=l

since By C S—, P[Bo] P[S*] < P[S™] P[S*] = P[S].
Also since By € f_'_;o, h € F§° they are independent, so

/B th:P[Bo]/th.

The above sum is the tail of a convergent series, so [ may be taken large enough
that the sum is less than ¢/2. ]

Proof of Theorem 2: We show that, given ¢, there is an n such that if By € GZ7,
and f is G3°-measurable, 0 < f <1, then

\/BlfdP—P[Bl]/fdP'<e.

Fix ¢’ > 0. Find I so P[C}] > 1 — ¢’ and choose n = 3(A; + ;). Also, assume [
is large enough that the preceding lemma holds with €’ for e.
Note that

< +3¢/,

BlfdP—P(Bl) / fdapP

/ fap-pPBinc) [ faP
BiNC, Cy
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and hence it suffices to show that for By € G_. N C; and f which is
G N Ci-measurable,

(3.3) <é.

fdP — P(B,) /fdP

B,

Since n > max{3;, A}, by Lemma 2 it suffices to show (3.3) for B € .7-'_—50‘+A’ ne,
and f H, N C; measurable. Finally, we see that it suffices to show (3.3) for B;
a finite union of X-cylinders in F~2*4 N C; and for fi = ¥ A disjoint fa14 With
0 < fa <1 and A a cylinder set in H; so that AN C; # @. Since the frames S
with indices { and L form a disjoint partition of Cj, it suffices therefore to show
that for ¢’ sufficiently small

/ 15+ f1d P — P(B3 N S7)
BznS-— S+

f dP' < &'P(S).

But this statement has been shown in Lemma 5, for ! large enough with By =
B3;NS” and f =15+ f1- |
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